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Figure 1. Our mesh-free, geometry-conditioned learned operator solves surface PDEs (heat equation in the teaser) directly in the neural
domain on multiple modalities, without mesh extraction, or per-instance optimization. Trained once on a single exemplar (SPIKE, top-left),
the learned operator generalizes across unseen geometries, topologies, and input modalities. See supplemental for heat flow videos and also

Poisson solves.

Abstract

Solving partial differential equations (PDEs) on shapes un-
derpins many shape analysis and engineering tasks; yet, pre-
vailing PDE solvers operate on polygonal/triangle meshes
while modern 3D assets increasingly live as neural represen-
tations. This mismatch leaves no suitable method to solve
surface PDEs directly within the neural domain, forcing
explicit mesh extraction or per-instance residual training,
preventing end-to-end workflows. We present a novel, mesh-
free formulation that learns a local update operator condi-
tioned on neural (local) shape attributes, enabling surface
PDEs to be solved directly where the (neural) data lives.
The operator integrates naturally with prevalent neural sur-
face representations, is trained once on a single represen-
tative shape, and generalizes across shape and topology
variations, enabling accurate, fast inference without explicit
meshing or per-instance optimization while preserving dif-
ferentiability. Across analytic benchmarks (heat equation
and Poisson solve on sphere) and real neural assets across
different representations, our method slightly outperforms
CPM while remaining reasonably close to FEM, and, to
our knowledge, delivers the first end-to-end pipeline that
solves surface PDEs on both neural and classical surface
representations. Code will be released on acceptance.

1. Introduction

Solving partial differential equations (PDEs) on surfaces is
central to geometry processing, shape analysis, and many en-
gineering tasks; examples include heat flow on surfaces, Pois-
son equation, and harmonic interpolation. Classical FEM-
based solvers [10, 41] operate on (discretized) polygonal or
triangle meshes, with well-understood accuracy and stability
behavior. However, they cannot directly handle contempo-
rary 3D assets that are increasingly represented as neural
shape representations (e.g., point clouds or splats [35, 43],
neural surfaces [28, 42], overfitted implicit shapes [ 14, 39],
neural implicit fields [31, 43]). These representations are
popular as they are differentiable, often topology-agnostic,
and integrate naturally with modern learning and generative
systems. This creates a mismatch: mesh-centric PDE solvers
do not operate in the domain where neural data lives.
Handling surface PDEs directly in the neural shape do-
main removes mesh extraction, preserves end-to-end differ-
entiability (crucial for inverse problems and PDE priors), and
handles topology changes without intermediate re-meshing
or reparameterization, while avoiding round-trip errors and
engineering overhead. However, current workarounds ei-
ther extract a mesh (e.g., marching cubes [22], dual con-
touring [13] and their neural variants [7, 8]) and shuttle
results back, hindering differentiable pipelines; or rely on
per-instance residual training (e.g., surface PINNs [11]),



which generalizes poorly across shape variation.

We introduce a geometry-aware neural PDE solver that
targets the surface-structure component of PDEs and oper-
ates directly inside neural representations while retaining
classical-solver fidelity and applying equally to classical sur-
faces. Inspired by the Closest Point Method (CPM) [38], our
approach learns how surface geometry governs the extension
of a surface field into a narrow band—the core operation of
embedding-based solvers—allowing PDEs to be extended
to the ambient Euclidean space and solved directly on their
surface representations. A lightweight neural operator cap-
tures local geometric context (e.g., normals and principal
curvature directions) and produces this extension. Trained
once on a single shape, it generalizes across unseen geome-
tries, modalities, and topologies, requires no meshing or
per-instance optimization, and remains fully differentiable,
making it suitable as a new neural PDE layer into existing
neural training setups.

We demonstrate our neural PDE operator on different
popular representations: neural surfaces, spherical neu-
ral surfaces [42], point clouds [15], overfitted occupancy
fields [25], Gaussian splatting [15], as well as deep implicit
fields [31]. We validate our results in two ways: (i) On
spheres, we evaluate the heat and Poisson equations against
analytical ground truth, and compare with both FEM and
CPM [10, 38], to assess accuracy. (ii) For general shapes
and modalities, we use dense-mesh FEM as reference to
assess generalization and robustness. Our solver achieves
competitive accuracy with zero meshing overhead and no
extend—restrict shuttling, as required by CPM. Most impor-
tantly, we find that our method, once trained, generalizes
surprisingly well across surface variations, topology, and
meshing changes. As shown in Figure 1, a model trained on
a single shape (the SPIKE) generalizes across diverse shapes
and neural representations. We also ablate design choices
and hyperparameters.

In summary, our main contributions are:
¢ Introducing a novel mesh-free, end-to-end differentiable

solver for surface PDEs operating directly on both neural
and classical surface representations.

* A lightweight, shape-conditioned network trained on a sin-
gle shape that implicitly learns the narrow-band extension
without per-shape optimization.

» Extensive evaluation showing generalization across unseen
shapes, topologies, and representations, with competitive
accuracy and speed on heat and Poisson equation.

2. Related Work

Classical and mesh-based methods. In Euclidean do-
mains, PDEs are classically discretized by finite differences
and Galerkin finite elements [24, 41]. Extending finite dif-
ferences to curved manifolds typically requires embedding
strategies, whereas Galerkin methods naturally generalize

to arbitrary geometries via mesh-based formulations. On
surfaces, surface finite elements (SFEM) discretize the man-
ifold and apply intrinsic schemes on a triangulation, offer-
ing strong accuracy and stability guarantees under standard
regularity and shape-regular mesh assumptions; see the sur-
vey [10]. Discrete differential geometry operators (e.g., the
cotangent Laplacian) are also widely used for geometry pro-
cessing and harmonic problems on meshes [9, 26]. The
main limitations are geometric and practical: performance
hinges on mesh quality, evolving or noisy geometries of-
ten require (re)meshing, and distortion/tangling can degrade
conditioning, accuracy, and robustness. The main restriction
being that such methods cannot directly be applied to current
neural representations, without meshing.

Embedding and unfitted methods. Embedding methods
solve surface PDEs in the ambient domain while enforc-
ing surface constraints. We build on the Closest Point
Method (CPM), which alternates extension and Cartesian
updates on a narrow band and is valued for simplicity
and robustness [38]; accuracy/flexibility have been boosted
with high-order and meshfree RBF-FD stencils and least-
squares implicit variants, including moving surfaces [32, 33].
Stochastic Projected Walk on Spheres offers discretization-
free Monte Carlo solutions via repeated manifold projec-
tions [40], and CPM has been adapted to interior bound-
aries [16]. Unfitted FEM avoids explicit surface meshes
by solving on a background grid: CutFEM stabilizes cut
cells with ghost penalties [2, 3], while TraceFEM restricts
spaces to an implicit level set and extends to evolving in-
terfaces [19, 29]. Despite reduced meshing effort, these ap-
proaches still shuttle information between surface and grid,
introducing overhead and potential bias, especially with im-
plicit surfaces. In contrast, our method performs grid-to-grid
updates without extend—restrict loops.

Learning-based solvers. Physics-Informed Neural Net-
works (PINNs) [37] impose PDE residuals and bound-
ary terms in the training loss, enabling mesh-free for-
ward/inverse solves but typically requiring per-instance opti-
mization; they are sensitive to stiffness, boundary enforce-
ment, residual weighting, and training stability at scale. Sur-
face extensions (e.g., [11]) demonstrate feasibility on man-
ifolds without meshing yet inherit the same optimization
and runtime burdens. A complementary direction, neural
operator (DeepONet, FNO) [17, 20, 23] and manifold vari-
ants [5, 34], amortizes solution maps across problem families
but generally relies on supervision from classical solvers,
assumes fixed discretizations/charts, and does not natively
target neural implicit geometry. Closer to our goals, implicit
neural spatial representations treat an implicit neural repre-
sentation (INR) as the spatial discretization and evolve its
weights over time to solve time-dependent PDEs [6]. These
methods show strong accuracy—memory trade-offs but still
operate via global weight evolution and per-problem time



integration, and cannot be directly used to unseen shapes. In
contrast, we learn a local, geometry-conditioned update oper-
ator that works directly in a narrow band around the surface.
It takes geometric cues from diverse neural shape repre-
sentations and performs a single forward update, avoiding
per-instance training and mesh dependencies while retaining
solver-level accuracy.

Neural shape representations. Modern 3D pipelines in-
creasingly favor neural implicit/explicit representations over
traditional meshes. Point clouds (e.g., PointNet/PointNet++
or splats [15]) provide a mesh-free sampling interface but
lack continuity and differential structure by default [35, 36].
Neural implicit fields capture geometry as continuous func-
tions: signed distance fields (DeepSDF [31]) and occupancy
networks [25] model surfaces at effectively infinite reso-
lution and are widely used for reconstruction and anal-
ysis. Overfitted implicit neural representations, such as
SIREN [39], fit a single shape/scene as a coordinate MLP
and expose smooth values and derivatives. For genus-0 sur-
faces, spherical neural surfaces map S? to embedded shapes
and expose intrinsic operators without meshing [42]. Scene
appearance and volume are commonly modeled by neural
radiance fields (NeRF) [27], with real-time explicit variants
via 3D Gaussian splatting [ 15]. Triplane feature layouts (e.g.,
EG3D [4]) factor 3D into three orthogonal 2D feature planes
that are both expressive and efficient for reconstruction and
generation. Finally, recent latent encodings for neural fields,
such as 3DShape2VecSet [43], represent shapes as sets of
vectors tailored for generative modeling and downstream
learning. These representations are differentiable and often
topology-agnostic, making them suitable for our PDE solver
that operates without mesh extraction (see Section 4).

3. Method

We propose a representation-agnostic solver that computes
surface PDEs on neural surfaces, while remaining compat-
ible with other geometric representations. Given a surface,
which may be neural (e.g., Spherical Neural Surface, SDF
or occupancy INR, overfitted implicit, or point cloud with
normals), we first extract local geometric context such as nor-
mals and curvature tensor at sampled surface points. We then
build a narrow Cartesian band around the embedded surface,
following the principle of the Closest Point Method [38],
and reformulate the surface PDE as a volumetric one de-
fined within this neighborhood. Surface functions are ex-
tended to the band through a closest point extension that
enforces normal constancy — the main assumption under-
lying embedding-based solvers. This extension is modeled
by a lightweight geometry-conditioned neural operator that
learns it implicitly. The operator acts locally across the
surface, recognizing the underlying geometry from local fea-
tures and grid stencils to produce local band functions, which
are then assembled into a single global solution. This design

helps generalize across a wide range of shape modalities,
topologies, and surface functions.

Our training is local and data-efficient: patches from a
single representative shape (see SPIKE in Figure 1) suffice
to learn the operator. Two aspects are central to its con-
struction: (i) structuring the architecture with geometric
conditioning, and (ii) ensuring generalization to unseen func-
tions at test time. At inference, the method first produces the
extended band function by applying the local operator across
all patches — each acting locally but contributing to a single
global update of the field. The PDE is then solved directly
within the band, as in [38], and for time-dependent problems,
this process reduces to repeated global updates over time
steps. The approach requires no meshing or per-instance
optimization, remains fully differentiable, and integrates as
a drop-in neural PDE layer.

Closest Point Method (CPM). The original method [38]
embeds surface PDEs in a thin Cartesian narrow band
around the surface S. The equivalent volumetric PDE
is then solved inside this band using standard numerical
methods such as finite differences (FD), Runge—Kutta (RK)
schemes and time integrators such as forward Euler for time-
dependent problems. For the solution of the volumetric PDE
to coincide with that of the original surface PDE when re-
stricted to S, the surface function must be extended into the
band through a closest point extension, ensuring constancy
along surface normals.

The CPM alternates between two simple operations: (i) a
standard discrete volumetric solve in the narrow band, and
(ii) a re—extension step to ensure normal constancy. At the
core is the closest—point map cp sending a band point z € R?
to its nearest point on the surface cp(z). A surface function
ug is extended to the band by u(x) := us(cp(z)). When
u is (approx.) constant along normals, ambient derivatives
restricted to surface S coincide with intrinsic ones, allowing
replacement of surface operators (e.g., gradient/Laplacian)
by standard finite—difference stencils during solve step.

However, each time step (involving a FD solve) generally
breaks normal constancy, causing the field to vary along
surface normals. Hence, CPM re—extends by overwriting the
band value at = with the value at cp(z) (which is interpo-
lated from the neighbouring grid points). In practice, CPM
requires (i) constructing a band of width ¢, (ii) efficient eval-
uation of closest points, and (iii) re-extension operation, and
(iv) consistent handling of boundary conditions by tagging
band cells whose projections lie on any boundary 9S. For
details, see the original paper [38].

The CPM is simple, robust, and reuses
off—the—shelf Cartesian solvers; however, it requires
extend—solve—reextend, using surface information, at
every iteration. Instead, we design a neural network that
replaces CPM’s re-extension step implicitly and naturally
accommodates neural shape representations.
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Figure 2. Pipeline overview. From a surface S, we sample points and geometric features (normals, local features). Around an e-narrow
band around the shape, we gather Cartesian grids Bs to store an initial field Uy extended from surface values and covered by overlapping,
surface-centred patches {P;}. Each patch is reoriented to its local frame, yielding {Bi, }A}} which are processed by our lightweight
geometry-conditioned operators Ng to produce local updates (see Figure 3). The local updates are smoothly aggregated to form the global
band update U, and advanced with a standard grid PDE time step to get U;41. Iterating this loop yields surface PDE solutions directly in the
neural domain via grid-to-grid updates, without mesh extraction or extend—restrict shuttling.

3.1. Algorithm Steps

We learn a local neural solver that operates around a narrow
band of implicit or explicit surface and produces band up-
dates that keep the function constant along surface normals.
Our pipeline is representation-agnostic and applies to any
surface that supports (i) sampling on the surface, and (ii) es-
timating local differential cues. In Section 4, we discuss how
to estimate these for different neural shape representations.

Inputs and notation. Let S C R be a smooth surface rep-
resentation, either neural (e.g., SNS, SDF/occupancy INR)
or traditional (e.g., point cloud, mesh). We denote the unit
normal at z € S by n(x), and the principal curvature di-
rections by (t1 (), t2(x)), with t; aligned to the maximum
curvature and to to the minimum; when curvatures are equal
(umbilic points), any orthogonal tangent pair is chosen and
the order doesn’t matter. A regular Cartesian grid G provides
samples in a narrow e-band around S. We now describe our
full pipeline (see Figure 2).

Pipeline Overview. (i) Surface feature extraction. Com-
pute geometric descriptors on the surface on a set of surface
samples as: Fs := {(z, n(z), t1(z), t2(z)) | z € S}.

(i) Narrow-band construction. Define a uniform vol-
umetric grid G in a bounding box of S and retain grid
nodes within distance ¢ of the surface: Bs := {y €
G | dist(y,S) < e}.

(iii) Overlapping local patches. Cover S and its nar-
row band Bs with surface-centered patches. Each patch
is anchored at a surface point p{ € S, which serves as
its center, and is defined as: P; := (L;, B;, F;), where
L; = (pf,n(ps), t1(p§), t2(p§)) defines a local frame at p§
used to express all subsequent quantities. 3; C Bg collects
nearby band samples and F; gathers surrounding surface
features (points and normals in our implementation). All
quantities within a patch are expressed in the local frame
L;. Accordingly, coordinates of local band samples and lo-
cal surface features (i.e., B3;, F;) are transformed into this
intrinsic coordinate system, and we denote their local-frame
representations with a hat symbol (i.e., BZ-, ﬁi).

(iv) Learned band-to-band update (neural operator).
Given a scalar band field U; : Bs — R at time ¢, we de-
note by u} := Uy|p, its restriction to the local band associ-
ated with patch P;. A lightweight neural operator Ng con-
sumes per-patch stencils (band values and local geometry)
and updates the sampled field to enforce normal constancy:
i = NJ"")(B;). We denote by a tilde (%) functions that
are approximately constant along surface normals.

(v) Aggregation of local predictions. Local predictions
are combined to reconstruct a global band field via smooth,
proximity-weighted averaging as,

() — Zen, exP=llo = pilP/T) Ti(a)
t - )
Zi:wEBi eXP(*”I - p;:”Z/T)

with temperature 7" > 0 controlling the blending.

(vi) Time evolution in the band. Since U, is nearly
constant along normals, intrinsic surface operators can di-
rectly be accurately approximated. We evolve U, using
standard finite differences and forward Euler scheme (e.g.,
for heat/diffusion):

Utyar(x) = Ut(x) +dt Aﬁt(x), r € Bgs,

where A is the discrete Laplacian on G restricted to the
band. Boundary conditions are imposed on band nodes
whose projections lie on 08, as in [38]. Note that Uy g,
carries no tilde, as there is no guarantee that the updated
function remains constant along the surface normals.

(vii) Iterate or reconstruct. If additional steps are needed,
return to the learned band-to-band update (step iv) and re-
peat the aggregate—evolve cycle. At any time, we ‘readout’
the surface solution by restricting the band field to S, by
interpolating with radial basis functions (Gaussian kernels
in ours) for a smooth surface field.

3.2. Overlapping Local Patches

We decompose the surface S and its narrow band Bs into
overlapping, surface—centered local patches, each aggregat-
ing nearby band samples for grid-based updates and nearby



surface samples with geometric features for conditioning. A
patch P; is centered at a surface point p§ € S. Around p§, we
gather the k nearest band nodes to form a local stencil 5;. In
Section 4, we discuss choice of k for good accuracy—locality
trade-off. Next, we take tight axis-aligned bounding box
of B; and dilate it by a small margin. All surface sam-
ples whose coordinates lie inside this enlarged box, together
with their normal, constitute the surface-conditioning set
Fi, providing a broader geometric context around the local
surface region. Thus, the tuple P; := (L;, B;, F;), with
L; = (p§,n(p§), t1(ps), t2(p§)), defines one such patch.
Using £;, we express all quantities of B; and F; in the lo-
cal frame centered at p with basis (n(p5), t1(p$), t2(p$)),
ensuring invariance to translation and rotation. Degener-
ate cases where curvature directions are ambiguous (e.g.,
umbilic regions where principal curvatures coincide) are nat-
urally present in the training data and are further handled
through data augmentation: random rotations of the local
patch (encompassing both normal and tangent directions)
enforce the network to learn rotational invariance.

We progressively generate patches across S, expanding
outward from an initial (surface) seed so that coverage nat-
urally propagates over the surface (similar to floodfill re-
stricted to the surface). This strategy yields a family of over-
lapping patches whose union covers the entire band, while
maintaining controllable redundancy. The degree of overlap
is controlled by a spacing parameter in our patch-placement
procedure, which determines how far each new center is
placed from the previous ones while ensuring that adjacent
band regions still overlap. Smaller spacing increases redun-
dancy and overlap, whereas larger spacing yields sparser
coverage. Increasing either improves robustness but adds
computational cost. In our implementation, nearest-neighbor
queries on Bs and S are accelerated with a KD-Tree.

Coverage condition. A potential issue arises from using
a fixed number of neighbours & to define each patch: for
small grid spacing Ax or large band width &, some band
points may lie too far from any surface center p§, leading to
incomplete coverage of the band Bs. This motivates us to
seek a relation linking e, Az, and k.

This setting is closely related to the classical Gauss cir-
cle problem (and its three-dimensional analogue, the Gauss
sphere problem, see [18]), which counts the number of lattice
points contained in a ball of radius 7. In three dimensions,
neglecting higher-order terms, the number of grid points N3
within a band of radius ¢ and spacing Ax is well approxi-
mated by the volume of a ball of radius £ /Ax:

Ni(e/Az) ~ ix (E)S

Ensuring every band point is covered by at least one patch
yields the condition, we arrive at:

e < Az (%)1/3.

3.3. Learning a Neural Update Operator

3.3.1. Neural geometry encoder

Our neural geometry encoder is a lightweight network built
from small MLPs with an attention-like interaction for local
geometry adherence. It operates locally in the narrow band
around the surface and updates the target function in a single
step, directly on grid values.

Network architecture. As illustrated in Figure 3, our neu-
ral solver acts on local geometry attributes and updates the
field within each narrow band B;. The inputs are the query
point, the band points Bi, and their current field values u?, to-
gether with the associated surface features Fi, all expressed
in the local frame £;. The query point ¢ attends to its neigh-
boring band samples to obtain spatial weights, while Fi
modulates this aggregation so the update is conditioned on
local geometry. The output is a weighted sum producing the
updated value at q. To handle a variable number of surface
features per patch, we apply mean pooling (similar to [35]),
yielding a fixed-size descriptor. Formally, we encode the
neural update as:

No : R3 x RFX3 » RNix6 « RF
(qal’;,ia]:-iaui) — N@(qagiaﬁivui)

— R,

where © contains the weights of the three MLPs encoder
(01,04, 603) and a learnable scalar A. For convenience, we
define a compressed form of the network where the patch
Pi = (L4, B, F i) and its current field v’ are fixed:

N(E)Pi’w g N@(q,l?i,]:},ui)

In practice, our implementation evaluates multiple queries
simultaneously. Let Q@ = {qi,- - ,q} C R3; then

/\/’gp““j)(Q) = {N(E)Pi’“i) (q)} . When solving PDE,
R q€Q
we set () = B, as band values are updated at band samples.

3.3.2. Training setup

Dataset construction. We train on a single representative
surface, the SPIKE, represented by an SNS [42] S, : % C
R3 — SPIKE. Note that since our network only depends
on first and second order quantities (i.e., normal and curva-
tures), the single SPIKE shape, having a good distribution of
curvature profiles, is sufficient to train on — we test its gen-
eralization behavior in Sec. 4. Surface is split into patches
{P;}, as Sec. 3.2. For each patch, we apply random rotations.
Each band B; is paired with closest points as,

cp(x) := S“<arg£is% ||z — Sw(y)H%), x € B;,

forming II; := {cp(x) | # € B;}. For supervision, we use
monomials:

M= {(z,y,2) — 2"yl 2F | i+j+k <5}
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Figure 3. Neural update operator (overview). Given a query
location g, the local band BZ expressed in the local frame £; cen-
tered around p§ for patch P;, with locally-transformed surface
features _7:'1 (e.g., positions, normals), and current band values ut at
grid sites (time index ¢ omitted for brevity; full notation ui), our
operator predicts updated function value at location q. Trainable
components include compact MLP blocks (®g, , Po,, Ps,) and a
scalar \. The full network Mg produces the updated band value at
g, yielding a single geometry—conditioned grid-to-grid step.

Note that we rely on any (unseen) function to be sufficiently
approximated by only their top few Taylor coefficients since
PDE solutions are smooth; hence, learning over monomial
functions turns out to be sufficient in our tests. For each
such g € M, we evaluate g(B;) and g(II;), where the first
serves as the network input and the second as the ground
truth target, yielding pairs:

& = {(9(B), (1)) | g € M }.
Thus, the training dataset is D := { (l’;’i, ]:'Z-, &)y

Loss functions. We use two loss functions. The primary

mean squared error enforces accurate function reconstruc-
tion:

1 (Pir9) /1 5 2

L — N, w9 (B.) — GT )

MSE k‘|DHM ) Z H (S ( z) g H2
(Bi,Fi,£:)ED

(9,95T)€E:

To check geometric consistency, we monitor a normal-
consistency term enforcing constancy along surface normals,
evaluated over different patches and functions (P, u):

Inc = (Vo N (9), n(ep(a)))-

This term encourages the field gradient to remain orthogonal
to the surface normals; when the dot products are close to
zero then the field is nearly constant along the surface nor-
mals. The gradient V, J\/gj’u) (q) is computed via automatic
differentiation with respect to the query location g (other
terms are detached). The overall objective is:

L = Lyse + a Lnc.

We conduct an ablation study (see supplemental) to assess
the contribution of the normal-consistency term Lyc and to
determine an appropriate weighting «.. This analysis high-
lights how enforcing normal-aligned consistency improves
accuracy across surfaces.

4. Evaluation

Baselines. We evaluate against two established families:
(i) Surface FEM (SFEM) discretizes the PDE intrinsically
on an explicit triangle mesh: unless stated otherwise, we
use linear elements with the cotangent Laplacian and a con-
sistent mass matrix [10, 41]. Meshes come either from the
ground-truth surface or from marching cubes [21] on the
same implicit surface used by our method, with multiple
resolutions to probe convergence and mesh-quality effects.
We do not aim to outperform FEM, whose solvers are highly
mature and extensively optimized. Instead, we use FEM
to provide reliable reference solutions and expected error
levels, illustrating the behavior and capability of our method.
Comparisons to FEM should therefore be viewed as ground-
ing rather than competition.

(i1) Closest Point Method (CPM) solves in an Eulerian nar-
row band around the surface using standard Cartesian sten-
cils and alternates solve and re—extend steps [38]. Closest-
point projections and normals are computed from the same
implicit geometry used by our method to ensure parity. We
tested different interpolation schemes for the re-extension
step (trilinear versus polynomial) and retained the polyno-
mial one, consistent with the original CPM formulation, as
it yielded the best accuracy—efficiency trade-off.

For fairness, all baselines share the same right-hand sides,
initial data, and boundary conditions; we also matched reso-
lution schedules and aligned stopping criteria (final time or
steady-state residual).

PDEs. We benchmark heat diffusion (O;u = Agu) and
Poisson (Asu = f) on closed surfaces. For well-posedness,
we initialize the heat equation with a prescribed initial con-
dition and let it evolve until reaching a steady state. For
Poisson, we choose a zero-mean function f over the sur-
face and select the zero-mean solution on the surface, since
the kernel of the Laplace—Beltrami operator on closed sur-
faces corresponds to constant functions. We report both
boundary-free cases and settings with Dirichlet conditions
on embedded curves (imposed identically for all methods).

Metrics. We report normalized mean absolute error
(NMAE), normalized max error (NMaxE), normalized root
mean square error (NMRSE). Input probe function ranges
were normalized to [—0.5, 0.5]. See supplemental for details.

Shape representations. We evaluate across common
shape encodings and derive the geometric cues needed by
our operator in a consistent way. (i) Meshes: normals are
area—weighted averages of incident face normals; mean cur-
vature normals follow the cotangent discretization, and prin-
cipal curvatures are obtained from discrete differential oper-
ators [9, 26]. (ii) Point clouds: we estimate normals via PCA
of k-NN neighborhoods with sign disambiguation along a
coarse viewpoint field. More advanced point normal predic-
tion [12] may be used; we do not use curvature features in



this case. (iii) Spherical Neural Surfaces (SNS): The method
provides direct access to normals and first/second fundamen-
tal forms by differentiating the mapping S, : S? C R? —R3;
principal curvatures follow from the Weingarten map [42].
(iv) Implicit SDF fields (DeepSDF/overfitted INRs): nor-
mals are V/|| V|| for these implicit fields [31]. However,
although we could have used curvatures using level-set for-
mulas [30], we found the estimates to be noisy; hence, we
did not use curvature estimates in these cases. For occu-
pancy fields [25, 39], we compute normals from the implicit
gradient of the network near the isosurface. (iv) GSplats:
after the training we treat all splats as a point cloud and filter
out those that have high depth error. We extract the features
using the same protocol as in (ii). See Figure 1.

Accuracy and Convergence on Spheres. We begin on the
unit sphere, where closed-form solutions for heat diffusion
and Poisson problems are available via spherical harmon-
ics, enabling precise accuracy and convergence studies (see
Chapter 6 [1]). We also compare across four sphere mesh
resolutions—coarse, medium, fine, and very fine with ap-
proximately 0.1k, 1k, 10k, 100k vertices, respectively.

Across resolutions, our solver matches CPM in accuracy
(Table 1), even when CPM benefits from dense meshes, and
follows similar error trends. Experiments further show that
high-resolution SFEM provides a reliable proxy for ground
truth (used later when analytic solutions are unavailable).
Unlike mesh-centric pipelines, our errors are notably stable
under remeshing and connectivity changes (see supplemen-
tal), indicating reduced sensitivity to sampling irregularities
and local topology. Most importantly, our method operates
natively in the neural implicit domain and can be used as
a drop-in neural PDE layer within standard deep-learning
frameworks.

Table 1. Poisson on the sphere (analytic GT). Error vs. resolution
for SFEM, CPM, and our method. We report normalized mean
(NMAE) and max (NMaxE) errors (lower is better); all methods
use identical right-hand sides and evaluation grids. See the supple-
mental for the corresponding heat equation table.

Solver  Resolution NMAE | NMaxE |
Coarse 1.05 x 1072 2.32 x 10~2

SFEM Medium 6.48 x 10~%  1.90 x 103
Fine 2.84x107% 6.30 x 1074

Very fine  1.11 x 10=%  1.29 x 10~*

Coarse 456 x 1072 1.36 x 101

CPM Medium 1.49 x 1072 3.59 x 102
Fine 1.46 x 102 3.49 x 102

Very fine  1.48 x 1072 3.52 x 102

Coarse 2.75x 1072  9.14 x 101

Ours Medium 1.24 x 1072 2.99 x 10~2
Fine 1.33x 1072  3.17x 1072

Very fine  1.32 x 1072 3.23 x 10~2

Handling Different Shape Representations. We run our
solver on multiple shape encodings (mesh, point cloud, SNS,
SDF/occupancy INRs, Gaussian Splatting), using the same
local features described above (positions and normals, with
optional curvature), illustrated in Figure 1. Evaluation is per-
formed on the steady-state solution, whose ground truth is
analytic (given by the mean of the initial condition over the
surface). Although a direct comparison is not strictly mean-
ingful across different shapes and representations, similar
trends are observed (see Table 2), with SNS yielding the best
results—consistent with its superior geometric estimates.
Generalization across modalities also indicates robustness
to noisy geometric quantities, as different representations
provide features of varying quality.

Table 2. Comparison of different surface representations for the
heat equation on the steady state. The metric is the Normalized
Root Mean Squared Error (NRMSE), computed against the analytic
solution.

Representation / Shape NRMSE |
Neural SDF / Camera 2.17 x 1072
Overfitted SDF / Max Planck Face ~ 3.03 x 1072
Spherical Neural Surface / Armadillo  1.88 x 102
Gaussian Splatting / Snowman ~ 6.15 x 1072
Point Cloud / Hat ~ 2.94 x 102
Mesh / Holey Human 1.92 x 1072

Generalization across shapes. Our neural operator,
trained once on a single shape, transfers seamlessly to unseen
shapes and topologies across input modalities. As illustrated
in Figure 4 and quantified in Table 3, it closely matches
SFEM reference solutions for Poisson across diverse geome-
tries (e.g., organic, CAD parts with sharp transitions, and
thin-structure cases) with consistently low NRMSE. This
amortized, geometry-conditioned behavior underpins cross-
shape generalization. Nonetheless, errors tend to appear
near regions where closest points are not unique (e.g., sharp

() )

FEM Iﬁs FEM
11074

Figure 4. Comparison to SFEM on diverse shapes. For each
object, left shows SFEM and right shows ours; the small inset below
visualizes the pointwise error (ours vs. SFEM) with a hot—cold
colormap. See color bar for error scale and the supplemental for
per-shape statistics. (Error colormaps are normalized per instance.)



edges, thin parts, near the medial axis), a limitation inherited

from the CPM formulation.
Table 3. Poisson equation results on different shapes (NRMSE ).

Errors are computed against the FEM as ground truth solution.

Shape NRMSE Shape NRMSE

Jared 5.12 x 1072 Sofa  2.65 x 10~2
Octopus  1.13 x 10~2  Holey Human  2.67 x 10~2

Apple  3.20 x 1073 Fastener  3.95 x 1072

Boundary handling. As in CPM, Neumann conditions
are naturally satisfied since our update enforces normal con-
sistency. For exterior Dirichlet boundaries, we follow the
CPM practice of clamping boundary values and updating
only in the band. On the Max Planck head (see Fig. 5),
we solve heat with homogeneous and sinusoidal Dirichlet
data and compare to a high-resolution SFEM reference on
the corresponding open surface. Errors remain low and sta-
ble; detailed plots and per-case statistics are provided in the
supplemental. These results confirm that exterior Dirichlet
conditions are handled effectively, leveraging CPM’s bound-
ary treatment, which fits naturally within our method.

Figure 5. Dirichlet boundaries on an open surface. Heat diffusion
on the Max Planck head cut at the neck (left to right) with boundary
values clamped on the cut. See supplemental.

Ablations. Unless noted, all ablations use identical data,
schedules, and hyperparameters; results across tables are not
directly comparable. Overall, the studies support a simple,
data-efficient design (see supplemental). (i) Geometric con-
sistency vs. data. A small weight on Ly reliably lowers er-
rors; large weights bias toward trivial normal-invariant fields
and hurt fidelity. Even without Ly, the operator largely
maintains normal consistency. (ii) Local features. Positions
and normals matter most; accurate curvature adds marginal
benefit. (iii) Band receptive field. Larger k yields dimin-
ishing returns: errors drop mildly then plateau, consistent
with convex aggregation. A mid-range & (~ 300) balances
accuracy, stability, and cost. (iv) Model capacity. Shallow,
narrow MLPs suffice; deeper/wider variants bring marginal
gains and may overfit. (v) Learnable attention strength. A
single learnable scalar A modestly but consistently improves
accuracy, providing lightweight adaptation.

5. Conclusion

We presented a mesh-free solver that computes surface
PDEs directly on neural implicit surfaces. Our geometry-
conditioned local operator performs a direct grid-to-grid

update in a narrow band around the target surface, remains
fully differentiable, and generalizes across shapes and topolo-
gies without requiring meshing or per-instance optimization.
On analytic benchmarks and real neural assets (across dif-
ferent representations), our method achieves competitive
accuracy and runtime while eliminating mesh extraction and
extend—restrict shuttling as required in the classical CPM
method. The approach integrates naturally into learning
pipelines, opening up options to directly add PDE neural lay-
ers for analysis, editing, and reconstruction involving neural
shape representations. While our focus is on the geometric
component of PDE solving—rather than optimizing high-
order numerical schemes—this design makes our operator
complementary to stronger discretizations and suitable for
integration into more advanced solvers. This opens promis-
ing directions for coupling our geometry-aware update with
advanced solvers, enabling PDE layers operating directly on
neural surfaces while remaining compatible with classical
surface representations.

Limitations and Future Work

Self-intersections and medial-axis neighborhoods. Near self-
intersections and/or close to the medial axis, SDF gradients
may become unreliable, which can degrade update quality. A
pragmatic remedy is a hybrid fallback: detect ill-conditioned
patches (e.g., via |V ¢| or curvature thresholds) and locally
hand off to a classical local FEM/embedded solver; the oper-
ator remains applicable elsewhere. Eventually, ours relies on
the neural implicit surface to be accurate on/near the surface.

Evolving surfaces and rebanding. When the underlying
surface moves under the PDE (e.g., surface evolution under
curvature flow), the narrow band must be rebuilt and re-
sampled, reducing any amortization benefits. Incremental
band updates, and reusing cached features can mitigate cost;
extending the operator to predict both updates and band
maintenance is also an interesting future direction.

Grid dependence and scale effects. Our operator is not
fully discretization-invariant: performance can vary with
grid spacing and band thickness. Scale-aware condition-
ing and multi-resolution training may improve robustness.
Learning on a modest range of resolutions generalizes in
practice. Extending our coverage condition, it will be in-
teresting to derive a relation between the sampling density
and implicit surface quality to further guide the grid and
sampling processes.

Finally, in this work, we focus on Poisson solves and heat
equation; strongly anisotropic or stiff systems may require
tailored stabilization or implicit time-stepping. Incorporat-
ing learnable preconditioners, implicit updates, or operator
splitting within our framework is a promising future work.
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Learning to Solve PDEs on Neural Shape Representations

Supplementary Material

1. Ablation and Design Analysis.

Each ablation isolates a single component of our method:
we modify one factor at a time while keeping all other set-
tings strictly identical (same dataset splits, schedules, and
hyperparameters). This ensures that the observed variations
can be attributed to the component being modified. Because
ablations are run separately, with potentially different model
variants, the numerical values reported across different tables
are not meant to be compared to each other, only within each
table. Our main empirical findings are:

* Normal-consistency term improves stability; o = 1072
performs best, though MSE-only already yields good re-
sults.

* Positions and normals are the essential surface features.

¢ A local band size of £ ~ 400 offers the best accu-
racy—runtime trade-off.

¢ Very shallow MLPs (2 layers) are sufficient.

* A learnable A improves accuracy.

* Patch overlap has negligible effect; local behavior domi-
nates.

1.1. Effect of the Normal-Consistency Loss

We first assess the impact of the normal-consistency term
Lnc, which enforces invariance of the predicted function
along surface normals. From Table |, we observe that adding
the normal-consistency term Lyc consistently improves the
accuracy of the predicted solutions on both the analytical
sphere and the Star Fruit surface (evaluated against SFEM as
ground truth). In particular, the configuration L = Lysg +
1072 Ly yields the best average performance, achieving
the lowest NMAE and NMaxE on both benchmarks. While
the Lyisg-only setting also produces low errors, it does not
explicitly enforce normal invariance, and the model must
learn this behavior implicitly from the data. Adding a small
Lnc term reliably improves consistency and reduces error.
Therefore, we retain the mixed formulation with coefficient
10~2 as our default choice for all subsequent experiments.

1.2. Surface Features Ablation

Before selecting a final feature set, we evaluate how dif-
ferent geometric cues affect performance. Our architecture
is feature-agnostic: in principle, any per-surface descrip-
tor (positional, differential, learned, or otherwise) can be
injected into the operator. Modulo training, the operator
can adapt to whichever features it receives. To quantify the
importance of explicit geometric cues, we remove subsets
of surface features (e.g., normals, curvature) and report the
resulting degradation in performance. As shown in Table 2,

Table 1. Ablation on loss function design. GT is analytical for the
Sphere and SFEM for Star Fruit surfaces.

Sphere (GT analytic)

Loss NMAE | NMaxE |

Lwvse 229 x 1072 5.71 x 1072
+107%Lne 225 x1072 574 x 1072
+103Lne 231 x1072 588x 1072
+102Lne 2.08x1072 543 x 102
+107"Lye  233x1072  5.86 x 1072
+ Lne 240 x 1072 5.98 x 1072

Star Fruit (GT SFEM)

Loss NMAE | NMaxE |

Lumse 1.54 x 1072 4.03 x 1072
+107*Lye  1.51x1072  3.99 x 1072
+1073 Lye 157 x 1072 4.10 x 1072
+1072Lne 1.31x1072 3.56 x 1072
+107'Lye 134 x1072  3.63 x 1072
+ Lnc 142 x 1072 3.85 x 1072

removing positional coordinates or surface normals degrades
performance, confirming their importance for capturing lo-
cal geometry and spatial context. In contrast, mean and
Gaussian curvatures have little to no effect and may even in-
troduce noise, slightly reducing accuracy. This suggests that
curvature signals are either redundant with the local spatial
and normal information, or too noisy to provide additional
benefits. Interestingly, the performance drop remains mod-
erate even when most surface features are removed: since
the local band is constructed around the surface, it already
provides rich geometric context and implicitly encodes high-
level information about the shape, which helps maintain
reasonable accuracy. In the final model, we therefore retain
only positions and normals as surface features.

1.3. Effect of the Local Band Size &

We vary the number of neighbouring band points & per patch
to analyse their impact on the performance. As shown in
Table 3, increasing the local band size k leads to system-
atically lower errors for both the analytical sphere and the
Star Fruit surface. However, the improvement is marginal.
This behavior can be explained by the architecture of our
network: in the final aggregation stage, the model performs
a convex combination of the band contributions, assigning
smaller attention weights to points that are farther from the
query. Consequently, distant points have little influence on



Table 2. Ablation on surface features. GT is analytical for the
Sphere and SFEM-based for the Star Fruit surface.

Sphere (GT analytic)

Table 3. Effect of local band size k on Poisson. Sphere uses
analytical GT; Star Fruit uses SFEM GT.

Features NMAE | NMaxE |

All features 1.94 x1072 5.20 x 1072
w/o0 normals 2.10 x 1072 5.42 x 1072
w/o curvatures  1.98 x 1072  5.19 x 102
w/o points 2.22x 1072  5.62x 1072
Points only 2.15x 1072  5.44 x 1072

Star Fruit (GT SFEM)

Features NMAE | NMaxE |

All features 1.15 x 1072 3.24 x 1072
w/o normals 1.33x 1072  3.64 x 1072
w/o curvatures 1.08 x 1072 3.08 x 102
w/o points 125 x 1072 3.52x 1072
Points only 1.36 x 1072 3.68 x 1072

the prediction, which limits the benefit of further enlarging
the band. Choosing k therefore involves a trade-off between
accuracy, computational cost (since larger k increases the
number of parameters), and geometric flexibility: & directly
constrains the admissible band thickness and the spacing
between band points, which are all coupled by a geometric
inequality. In practice, we fix k& = 400, which provides a
good balance between precision, stability, and efficiency.

1.4. Network Architecture Ablation

We evaluate the influence of our MLP design by ablating
the number of layers and the hidden width. We also tested
standard nonlinearities (ReLU, SiLU, GELU) and observed
negligible differences, so we keep ReLU for all experiments
for consistency. As shown in Table 4, increasing the depth
or width of the Query and Local Band MLPs beyond the
configuration 2 layers and 64 neurons does not lead to signif-
icant improvement. The best trade-off between accuracy and
efficiency is achieved with the simplest setting (2 layers, 64
neurons), which already provides sufficient expressivity for
both the analytical Sphere and the Star Fruit surface. Deeper
or wider architectures slightly overfit and do not generalize
better, suggesting that the geometric encoding remains well
captured by compact networks.

As shown in Table 5, increasing the depth or width of the
Surface Features MLP brings only marginal improvements.
The overall trend is consistent across both the analytical
Sphere and the Star Fruit surface: moderate configurations
(2-3 layers with 64 neurons) already achieve near-optimal
performance. This indicates that the local geometric features
are relatively low-dimensional and can be effectively cap-
tured by shallow networks. Deeper or wider models yield
no significant benefit, confirming that compact architectures

Sphere (GT analytic) NMAE | NMaxE |

k=25 3.51 x 1072 8.85 x 1072
k=50 3.47 x 1072 8.68 x 1072
k=100 3.46 x 1072 8.67 x 1072
k=150 3.38x 1072 8.58 x 1072
k = 200 3.13x 1072 8.09 x 1072
k =250 3.10x 1072 7.92 x 1072
k =300 3.10x 1072 7.92 x 1072
k = 350 3.05 x 1072  7.84 x 1072
k = 400 2.96 x 1072 7.70 x 1072
k = 450 2.85 x 1072 7.49 x 1072
kE = 500 2.83x 1072 7.33x 1072
Star Fruit (GT SFEM) NMAE | NMaxE |

k=25 2.94 x 1072 7.38 x 1072
k=50 291 x 1072 7.34x 1072
k =100 288 x 1072 7.31 x 1072
k=150 277 %1072 7.12x 107
k=200 2.36 x 1072 6.21 x 1072
k = 250 224 x 1072 5.95 x 1072
k = 300 2.14x 1072 5.73x 1072
k = 350 2.13x 1072 5.68 x 1072
k = 400 1.93 x 1072 5.26 x 1072
k = 450 1.75 x 1072 5.04 x 10~2
k =500 1.53 x 1072  4.58 x 1072

Table 4. Ablation on the Query and Local Band MLP architectures
(layers x width). Both MLPs share the same structure since their
output dimensions must match. Each cell reports NMAE / NMaxE,
with all values scaled by 10™2. GT is analytical for the Sphere and
SFEM-based for the Star Fruit surface.

Sphere (GT analytic)

W 32 64 128

Layers

2 223/5.63 2.08/543 2.19/5.61

3 227/5.69 224/5.68 2.24/5.70

4 232/5.83 2.18/545 2.24/577

Star Fruit (GT SFEM)

w 32 64 128

Layers

2 1.36/3.67 1.31/3.56 1.43/3.82

3 1.48/3.92 1.43/3.84 1.41/3.81

4 1.55/4.07 136/3.67 1.45/3.92

provide the best balance between expressivity, generaliza-
tion, and computational cost.



Table 5. Ablation on the surface features MLP architecture (layers
x width). Each cell reports NMAE / NMaxE, with all values scaled
by 1072, GT is analytical for the Sphere and SFEM-based for the
Star Fruit surface.

Sphere (GT analytic)

w 32 64 128

Layers

2 223/5.63 2.08/543 2.19/5.61

3 227/5.69 224/568 2.24/5.70

4 232/5.83 2.18/545 224/577

Star Fruit (GT SFEM)

W 32 64 128

Layers

2 1.48/391 131/3.56 1.31/3.61

3 142/3.82 1.45/3.85 1.41/3.77

4 1.30/3.64 1.35/3.67 1.36/3.65

1.5. Influence of the Learnable Parameter )\

We study the role of the learnable scalar A that modulates
the surface-aware penalty within each patch. As shown in
Table 6, introducing the learnable parameter A slightly im-
proves accuracy on both analytical and SFEM-based bench-
marks. This indicates that allowing the network to adapt
the strength of the surface-aware penalty provides additional
flexibility during training. Keeping A learnable is therefore
beneficial and theoretically consistent: if this term were un-
necessary, the optimization would naturally drive A\ toward
~ 1.

Table 6. Ablation on the learnable A parameter in the attention
formulation. GT is analytical for the Sphere and SFEM-based for
the Star Fruit surface.

Sphere (GT analytic)

Configuration NMAE | NMaxE |
w/ learnable \ 2.01 x 1072 5.28 x 1072
wlo X\ (fixedto1) 2.16 x 1072 5.59 x 10~2
Star Fruit (GT SFEM)
Configuration NMAE | NMaxE |
w/ learnable \ 1.10 x 1072 3.15x 1072
wio A (fixedto1) 1.34 x10~2  3.63 x 102

1.6. Patch Overlap and Aggregation

Finally, we explore the influence of patch overlap in the
global reconstruction, varying the overlap ratio and the tem-
perature parameter 7' used in the convex aggregation weights.
The temperature has only a minor effect on accuracy: by

comparing the aggregated field against a ground-truth closest
point extension, we found that a moderate value (1" = 0.5)
provides stable and smooth reconstructions. Since changes
in T" had negligible numerical impact, we fix T' = 0.5 in
all experiments. The results in Table 7 show that the error
remains virtually unchanged as the number of patches in-
creases—ifrom 600 to 1250, both NMAE and NMaxE vary
by less than 1%. This stability arises because the operator
performs a local convex aggregation: the softmax weights
strongly emphasize nearby band samples (because the pa-
rameter 7' seen before is small), while assigning nearly zero
weight to distant ones. As a consequence, enlarging the patch
neighborhood adds points that contribute negligibly to the
update. This saturation is consistent with our observations
that the method relies primarily on local neighborhoods.

Table 7. Effect of patch overlap on Poisson (sphere, analytical
GT). Increasing the number of patches has negligible impact on
accuracy: because the operator performs a convex local aggregation
with softmax weights centered around each query, distant samples
contribute almost nothing.

Number of Patch NMAE | NMaxE |
600 1.33x 1072 3.19 x 1072
650 1.32 x 1072 3.17 x 1072
1250 1.33x 1072 3.18 x 1072

1.7. Choice of Training Functions

We explored several options for selecting a function family
to supervise our operator:

* Sobolev spaces: Sampling functions from Sobolev spaces
would be theoretically natural, since PDE solutions be-
long to these spaces. However, Sobolev spaces do not
offer an explicit basis, making them impractical for local
supervision.

» Laplacian eigenfunctions: Eigenfunctions form an or-
thonormal basis of L2, but they are tied to the global
geometry of a specific surface (e.g., spherical harmonics
on S?). Using them would bake in shape-dependent bi-
ases, whereas our goal is to generalize beyond the training
geometry.

* Monomials: We therefore use low-degree monomials
(z,y,2) — z'y/zF. PDE solutions are smooth, and
our operator is local, so any smooth function can be
well approximated by the first terms of its Taylor expan-
sion. Monomials span exactly this local polynomial space
and provide a simple, geometry-agnostic basis that works
across shapes and modalities.



2. Comparative Evaluation

2.1. Accuracy & Convergence

In this evaluation, we compare our method against classical
solvers in terms of accuracy and runtime. Complementing
the Poisson results in Table 1, Table 8 reports analogous
results for the heat equation. SFEM benefits from decades
of optimization in mesh-based numerical solvers, whereas
our approach is still a research prototype. On this idealized
benchmark, SFEM attains extremely low errors thanks to per-
fect mesh geometry and explicit discretization. When given
the exact same geometric information (surface samples and
normals extracted from the mesh), our method maintains sta-
ble accuracy across resolutions, with NRMSE consistently
around 7 x 1073 for the heat equation and NMAE around
1.3 x 10~2 for Poisson. Although not as precise as SFEM
on this setting, our operator is resolution-independent, re-
quires no meshing, and relies on a single learned update
rule that generalizes across PDEs, shapes and modalities.
These results show that even when geometry comes from
the mesh—rather than a neural surface—our solver behaves
robustly and does not benefit from mesh refinement, unlike
classical discretization-based methods. A single outlier ap-
pears in the NMaxE metric (on the coarse sphere in Table
1), originating from a configuration that is ill-posed for our
method. In this case, the solver receives almost no meaning-
ful surface information: the local patch contains essentially
a single isolated surface sample, which prevents the operator
from inferring any reliable geometric structure. Unlike in
the surface-features ablation (Sec 1.2 of the supplemental),
where the narrow band is still well formed and the network
can therefore produce good predictions even with limited
features, here the band itself is poorly constructed, provid-
ing insufficient spatial context for the operator to recover a
high-level representation of the underlying surface. Increas-
ing the band thickness alleviates this issue: with a slightly
larger band, the outlier NMaxE decreases from 9.14 x 10~1
to 5.26 x 10~!, while maintaining a good NMAE (around
4.2 x 1072).

Table 8. Heat equation on the sphere (analytic GT). Error vs.
resolution for SFEM, and our method. We report normalized root
mean square (NRMSE) error (lower is better); all methods use
identical initial condition and evaluation grids.

Solver Resolution NRMSE |
Coarse 2.93 x 10~
Medium  1.50 x 1076
SFEM Fine 1.58 x 1077
Coarse 9.46 x 1073
Medium  7.20 x 1073
Ours

Fine 7.24 x 1073

Table 9 highlights a marked contrast in robustness to

mesh resolution between FEM and our method. SFEM
exhibits very large error variations when the mesh is
coarsened—reaching increases of several orders of mag-
nitude—while our operator remains remarkably stable, with
variations typically within only a few percent. This confirms
that accuracy is essentially resolution-independent for our
approach. Naturally, FEM achieves higher absolute accuracy
and lower runtime on this idealized sphere benchmark; its
behavior here reflects decades of optimization and exact ac-
cess to mesh-based geometry. Nonetheless, the comparison
demonstrates that our method maintains consistent accuracy
across discretizations, offering robustness where traditional
solvers may degrade sharply under coarse or irregular mesh-
ing.

Table 9. Relative variation of accuracy and runtime for the Poisson
equation on the sphere across mesh resolutions. For each solver, the
Very fine (VF) resolution is used as the reference (0%) for accuracy,
while the Coarse (C) resolution serves as the reference (0%) for
runtime. Mesh resolutions follow the shorthand: C = Coarse, M
= Medium, F = Fine, VF = Very Fine. Positive values denote
degradation; negative values indicate improvement.

Solver Res ANMAE ANMaxE AT

C +9359% + 17884% 0%
SFEM M +483% +1372% +33%
F + 155% + 388% + 283 %
VF 0% 0% +9000%
C +97% + 2686 % 0%
Ours M -3% -1% + 400%
F -1% -1% + 645%
VF 0% 0% +1323%

2.2. Runtime scaling

Table 10 shows that the runtime of our method is primarily
controlled by the size of the local band rather than by the
resolution of the underlying surface. Increasing the number
of band samples leads to an increase in cost, whereas chang-
ing the mesh from 1k to 100k vertices has only a low impact.
Together with the robustness results in Table 9, this confirms
that our operator is effectively decoupled from the surface
discretization and behaves consistently across meshes of
different densities. We note that the reported runtimes in-
clude both the neural update and the PDE solve step inside
the band. The latter is independent of our contribution and
could be further optimized using other standard numerical
or hardware-specific accelerations.

2.3. Robustness to remeshing

To evaluate robustness to surface remeshing, we construct
four triangulated discretizations of the unit sphere that share
the same number of vertices (N=1500) but differing in their
vertex sampling patterns:



Table 10. Computation time (in seconds) for the Poisson equation
as a function of surface resolution (number of vertices) and band
size N. The runtime scales almost only with the number of band
samples, while remaining relatively insensitive to changes in mesh
resolution. This confirms that our method’s complexity is primarily
governed by the band size rather than the underlying surface dis-
cretization.

Band size 1k vertices 10k vertices 100k vertices
N = 10k 3.20s 4.13s 11.8s
N = 20k 5.89s 6.75s 15.3s
N = 30k 9.32s 10.7s 20.2s
N = 40k 16.4s 18.2s 27.6s
N = 50k 30.1s 35.6s 67.1s

* Regular: uniform triangles with Delaunay.

* Random: points are drawn independently from an isotropic
3D Gaussian, then normalized onto the unit sphere

* Jittered: add a small Gaussian-sampled noise to evenly
distributed samples and map to the unit sphere.

* Blue-noise: sampling points with a blue noise pattern
(from a list of random points, choose the farthest to yield
a well-spaced, random distribution).

Table 11 reports the Poisson error for SFEM and for our

method, together with the relative variation across mesh

types. SFEM is strongly affected by the sampling strategy:

its error varies by almost an order of magnitude across the

four meshes, reflecting its sensitivity to triangle quality and

vertex distribution. In contrast, our method shows negligible

variation (within 3% for NMAE and +6% for NMaxE),

confirming that the learned operator is largely invariant to

surface discretization. This robustness stems from the fact

that our solver operates in the narrow band with geometry

extracted only locally, rather than relying on mesh-dependent

differential operators.

2.4. Dirichlet boundary condition

To generate a controlled open boundary, we cut the Max
Planck surface with a single horizontal plane located at the
neck region. This creates a well-defined boundary curve
0S on which we impose Dirichlet conditions. We test two
boundary conditions of increasing difficulty: a simple, con-
stant one, and a more oscillatory fancy condition that stresses
the solver’s ability to handle nontrivial boundary signals. We
then solve the surface heat equation

0

5 = Asu u(t=0)=1,
on each truncated surface until reaching the steady state,
which we compare against the FEM ground truth.

1. Constant Dirichlet condition

f=0, 1.

Ulos =

Table 11. Robustness to mesh variation for the Poisson equation
on the sphere. All meshes contain N=1500 vertices but differ in
sampling strategy and triangulation. Errors are computed against
the analytical solution. Top: absolute errors for both methods.
Bottom: relative variation (min—max) w.r.t. the Regular mesh.

SFEM
Metric  Mesh type Error |
Regular 6.48 x 1074
Random 7.09 x 1073 +1.85 x 10~°
NMAE Blue-noise 2.18 x 1073 £+ 3.30 x 106
Jittered 1.12 x 1073 +£2.36 x 10~
Regular 1.90 x 1073
Random  1.03 x 1072 +1.98 x 10~°
NMaxE g e noise  3.63 x 10-3 4+ 3.88 x 10~
Jittered 3.09 x 1073 +9.18 x 108
Ours
Metric  Mesh type Error |
Regular 1.34 x 1072
Random  1.30 x 1072 +4.24 x 1074
NMAE Blue-noise 1.39 x 1072 44.12 x 104
Jittered  1.37 x 1072 +3.24 x 10~*
Regular 3.22 x 1072
Random  3.21 x 1072 £2.60 x 10~*
NMaxE g e noise  3.34 x 10-2 £ 9.69 x 10—2
Jittered 342 x 1072 +2.12 x 1073
Relative variation
Method ANMAE ANMaxE
SFEM +72% to +994%  +62% to +442%
Ours -2% to +3% -0.3% to +6%

2. Sinusoidal Dirichlet condition
f = —sin(k arctan(z, z)),

u‘as = sin(k arctan(z, z)).

The results in Table 12 show that our method remains sta-
ble under both boundary regimes, with only a moderate in-
crease in error for the more oscillatory sinusoidal condition.
This robustness is expected, since our solver inherits the
boundary—condition handling of the original Closest Point
Method [38]: Dirichlet values are directly imposed on the
band nodes whose closest-point projections lie on the bound-
ary curve 0S. As a result, the behavior at the boundary is
preserved accurately even on complex geometries.

3. Notations

General maths:
» Ag: Laplace Beltrami operator.



Table 12. Heat equation results on the truncated Max Planck surface.
Errors are computed against the FEM as the ground truth.

Boundary Conditions type = NRMSE |

standard 2.85 x 1072
fancy 3.40 x 1072

¢ A: standard laplacian.

e Vs: surface gradient.

» V: standard gradient.

+ S?: unit sphere of dim 2.

* ¢: band thickness.

e Auz: grid points spacing.

e T': temperature parameter for global aggregation.
¢ dt: infénitésimal time step element.

* (-,-): dot product.

* dist(y, S): distance from a point y to a surface S.

Method:

» &: surface representation.

e (n(x),t1(z),t2(x)): normal and principal curvature di-
rections at x € S. t; corresponds to the maximum curva-
ture direction.

e G: cartesian grid with a grid points spacing Ax not speci-
fied in the notation.

* Bs: band coordinates around S with tickness € not speci-
fied in notation.

« U: function define on the entire band coords. U is same
but also approximately constant along the normals. Can
also add underscore ¢ to say function at time ¢ (U,).

 u' € R*: function define on the local part B; of the band
coords. @' is same but also approximately constant along
the normals. Can also add underscore ¢ to say function at
time ¢ (ul).

¢ k: number of points in the local band.

Patch:

* p¢: center of the patch i. p§ € S.

i+ local frame (i.e, £; = (p§, n(ps), t1(ps), t2(p$)).

;. surface features of patch i.

i surface features expressed in the local frame £;.

;- local band coordinates of patch i.

. Bi local band coordinates expressed in the local frame L;.
» P: patch or P; if need to specify its index.

SRR

Network:

* No : (q,l%z-,.i’:}-,u) — N@(q,Bi,fi,u): global net-
work.

* (I)gl, ‘1392, @932 MLPs.

. Ngj’u) : ¢ — No(q, 3, ]:"7 u): compressed network
version where the patch and function are fixed. (l’;’ F ) e

P.

. N(E)P’“)(Q) = {Ng)’u) (q)} o where Q € RY*3. Vec-
qe

torised version of Ng.

Training pipeline:

* cp: closest point operator.

* II;: image of B; by cp.

* M: set of monomials.

* g: to designate a given monomial.

» D: dataset.

 &;: contains the functions (input/GT) for training.
* Lnc, Lvsg: losses.
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